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ABSTRACT
Live video streaming delivery over DynamicAdaptive Video Stream-
ing (DASH) is challenging as it requires low end-to-end latency, is
more prone to stall, and the receiver has to decide online which rep-
resentation at which bitrate to download and whether to adjust the
playback speed to control the latency. To encourage the research
community to come together to address this challenge, we organize
the Live Video Streaming Grand Challenge at ACM Multimedia
2019. This grand challenge provides a simulation platform onto
which the participants can implement their adaptive bitrate (ABR)
logic and latency control algorithm, and then benchmark against
each other using a common set of video traces and network traces.
The ABR algorithms are evaluated using a common Quality-of-
Experience (QoE) model that accounts for playback bitrate, latency
constraint, frame-skipping penalty, and rebuffering penalty.
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1 INTRODUCTION
Recently, a new breed of video services that support interactive
live video streaming has become tremendously prevalent. These
video services allow users to broadcast live videos over the Internet,
interact with their viewers and have many applications including
journalism, online education, virtual reality (VR) [7, 8]. Compared
to the video-on-demand (VoD) services, live video streaming re-
quires a low end-to-end delay for real-time interaction between the
broadcasters and the viewers while still maintaining low rebuffer-
ing ratio and high video quality. Achiving a good QoE [4] while
ensuring low latency delivery has become an upcoming challenge.

To ensure high viewer’s QoE, video streaming services use Dy-
namic Adaptive Video Streaming over HTTP (DASH) [2] which
comprises an essential element at the player side, the ABR algorithm.
ABR algorithms are leveraged to dynamically select the suitable bi-
trate level for future segments to be downloaded considering some
heuristics such as download throughput and buffer occupancy level.
Many state-of-the-art ABR algorithms have been proposed to deal
with the dynamic network condition. These algorithms are either
buffer-based (e.g., BBA [5], BOLA [13], QUETRA [15]), rate-based
(e.g., FESTIVE[6]) or quality-based. The latter includes reinforce-
ment learning-based algorithms (e.g., Pensieve [10]) and model
predictive control algorithms (e.g.,MPCDASH [16]). The existing
video streaming system and ABR algorithms, however, inherently
mismatch the properties of live video streaming scenario. DASH,
which is the predominant form of video delivery today, cannot
start playback until the entire video segment is fully downloaded,
resulting in an end-to-end delay longer than a segment duration.
Such delay, typically in the order of seconds, is unacceptable for live
video delivery. Furthermore, live video is generated and delivered
in real-time, and therefore, the ABR algorithm can only access a
few seconds of video ahead of time and can utilize less information
to make the optimal decisions.

To encourage the research community to come together and
address the challenges of live video streaming, we organize a new
Live Video Streaming Challenge1 at ACM Multimedia 2019. This
competition aims at improving the quality of live video delivery

1https://www.aitrans.online/MMGC/
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where the main task is to design an ABR algorithm that adaptively
decides on video bitrate and glass-to-glass latency control to attain
the optimal QoE. We provide an open source simulator based on a
frame-level live video streaming system similar to the MPEG Com-
mon Media Application Format (CMAF; ISO/IEC 23000-19) [1, 3]
standard with DASH, a set of video traces, a set of network condi-
tion traces, and a common evaluation QoE metric. The participants
use our system to implement and evaluate their ABR algorithms
for live video delivery. We hope that the system will serve as a
common tool for researchers to benchmark their algorithms with
each other, and thus contribute towards reproducible research.

In this paper, we give a detailed description of our simulator
platform (§ 2), present the datasets (§ 3) that are made available,
describe the task of the grand challenge (§ 4), introduce our QoE
model, discuss how each submission is evaluated (§ 5), and provide
an overview of the submissions (§ 6).

2 LIVE VIDEO STREAMING SIMULATOR
The simulator platform used in this grand challenge is modeled
after a commercial system deployed by PowerInfo2. It simulates
the interaction between the video player and a content delivery
network (CDN) server. Figure 1 shows the typical workflow of such
a system: A streamer captures and generates a live video stream
through a video source (e.g., a mobile phone), and then uploads
it to a transcoding server, which encodes the video into multiple
representations, each with different bitrate levels and resolutions.
Thereafter, each representation is pushed to a live origin server and
then to the edge servers. The client issues pull requests to one of
the edge CDN nodes, indicating which representation to download.
The corresponding representation is then delivered to the client.

2.1 Reducing End-to-End Latency
Lowering the end-to-end latency is the most urgent requirement in
live streaming scenarios. To reduce the latency, unlike the segment-
level pull-based DASH, our simulator adopts push-based frame-level
delivery, where the CDN node pushes video frames to the client
for playback, as soon as the frames of the requested representation
arrive at the CDN node. This is similar to CMAF [1] standard with
DASH. Thus the latency of requesting each frame (e.g., half of RTT)
and waiting the entire segment downloaded for playback can be
eliminated. The ABR algorithm makes the bitrate and delay control
decision periodically according to the current state (e.g., measured
throughput and buffer occupancy).

Our simulator further provides two knobs to control the latency
caused by the playout buffers: by adjusting the playback speed
and by skipping frames. The machanism to control the playout
speed [14] can be controlled by a triple (S,T ,Q), where T is the
target buffer level; S and Q are two buffer thresholds. When the
buffer level is between S and Q , the video is played back at normal
speed (1x); if the buffer is below S or above Q , the playout slows
down to rslow times or speed up to rf ast times, respectively. In
our system, based on the experience of PowerInfo, we set S = 0.5T ,
Q = 2T , rslow = 0.95, and rf ast = 1.05. The viewer usually cannot
notice the change in playout speed in this range.

2http://www.powerinfo.net/

Table 1: Observations from Simulator

Params Params Description

time (s) Physical time
time_interval (s) Duration in this cycle
send_data_size The data size downloaded in this cycle

frame_time_len (s) The time length of the frame currently
rebuf (s) The rebuffering time of this cycle

buffer_size (s) The buffer size in seconds
play_time_len (s) Video playout duration in this cycle
skip_time (s) The time length of skipped frames
end_delay (s) Current end-to-end delay
cdn_newest_id The newest frame id in the CDN
download_id Current downloaded frame id
decision_flag GoP boundary flag or I-frame flag
buffer_flag Whether the player is buffering

end_of_video Whether the video playback is over

The frame skipping mechanism works as follows: Under nor-
mal circumstances, the client downloads the video frames in order.
When the end-to-end delay exceeds a predefined latency threshold,
the client can skip frames and request to download the next I-frame,
instead of the next frame.

2.2 Simulator
Based on the streaming model described, we developed a discrete
event simulator to provide a re-producible environment for experi-
menting with ABR and latency control algorithms. Figure 2 shows
the simulated interactions between the video player and the CDN
server in the simulator, which includes the CDN push, the client
downloads, and the video playback. The operation environment
is abstracted out — the simulator reads in a video trace and a net-
work trace to simulator the dynamics of the video source and the
last-mile network condition. The simulator is also written so that
the ABR and latency control algoirithms are encapsulated, and so
different implementation can be easily plugged into the simulator.
The simulator exposes a list of observations from the environment
(listed in Table 1). The ABR and latency control algorithms can
decide the next action based on these observations.

An earlier version of the simulator was tested in an ABR algo-
rithm competition called AITrans3 in December 2018. Around 138
teams from China, USA and Japan have participated in this com-
petition. The set of teams come from both academia and industry
including Tsinghua, UCLA, and Alibaba. The participants are asked
to develop an ABR algorithm which will be tested through both the
simulator and a live video streaming system. Then the performance
of the ABR algorithms is evaluated by a QoE model. The relative
performance ranking of submitted ABR algorithms is mostly con-
sistent when tested with the simulator and the live system, which
supports the efficacy of our simulator.

3https://www.aitrans.online/
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Figure 1: Universal framework of live streaming.
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Figure 2: Overview of live video streaming simulator.

3 DATASET DETAILS
The dataset used in this challenge consists of two parts: the video
traces and the network traces. Each video trace and network trace
can be combined in the simulator to simulate the process of watch-
ing live video in a certain network condition.

3.1 Video Traces
The video traces contain frame-level traces of video sequences
encoded with IPPP frame structure. There are six video sequences
consisting of gaming, sports, and live shows scenarios. Figure 3
shows sample screenshots from these sequences. The video traces
are generated by re-encoding a high quality source video (at 4Mbps)
using a H.264/MPEG-4 codec into four representations, at bitrate
levels {500, 850, 1200, 1850} kbps and resolutions {240, 360, 480, 720}p.
The traces are stored in text format, with each line corresponding
to a frame in the video representation. Each line contains: (i) the
timestamp of the video frame, (ii) the size of the video frame in bits,
and (iii) a 1-or-0 flag indicating if the frame is an I-frame (if 1) or a
P-frame (if 0).

3.2 Network Traces
The network trace records the network condition between a CDN
server and the client. To test whether the ABR algorithm can obtain
good QoE in a wide range of network environments, we provide a
large-scale network dataset which covers a relatively broad set of
network conditions. The network trace is generated in two ways: (i)
We concatenated randomly selected traces from the collected real
network traces in WiFi and 4G scenarios provided by PowerInfo.

Table 2: Three categories of network traces

Category Range of average throughput

Strong Network [2.0, 4.0] (Mbps)
Medium Network [1.0, 2.0] (Mbps)
Weak Network [0.2, 1.0] (Mbps)

We only considered original traces where the average throughput
is less than 4 Mbps and the minimum throughput is above 0.2
Mbps. (ii) We leveraged the methods from Pensieve [10] to create a
synthetic dataset. We design a dataset to cover a relatively broad set
of network conditions, with average throughputs of 0.2 – 4 Mbps.

As shown in Table 2, all of the network traces are divided into
three categories: strong network, medium network, and weak net-
work according to the average throughput. Finally, three kinds of
network traces are randomly mixed to generate oscillating network
traces. Each network trace is a text file containing multiple lines.
Each line contains two floating-point numbers: the timestamp in
seconds and the measured throughput in kbps. The time interval
between each network throughput sample is 0.5 secs.

4 TASK DESCRIPTION
The task in our competition aims at obtaining good QoE while
maintaining the low latency. The participants are asked to design an
ABR and a latency control algorithm to achieve highQoEwhen their
algorithms are run in the simulator given various video traces and
different categories of network traces. Specifically, The algorithm
interacts with the simulator. It takes the observations as shown in
Table 1 from the environment as inputs. According to these states,
the algorithm decides on the bitrate for the next segment, the value
of target buffer which controls the adaptive playout mechanism and
the latency threshold which controls the frame skippingmechanism.
The decision space can be shown in Table 3. Note that the decision
can only take effect when it comes to the GoP (group of pictures)
boundary.

5 QOE EVALUATION
To evaluate the given ABR and latency control algorithms, our simu-
lator records the frame rate, rebuffering time, end-to-end delay, and
bitrate switches while simulating the live streaming and playback.
These data are then fit into a QoE model, which we constructed
based on the QoE model by Mao et al. [10]. We introduce two addi-
tional terms into the QoE model to consider the needs of live video
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(a) Gaming. (b) Sports. (c) Live Show.

Figure 3: Three categories of video traces.

Table 3: Decision Space for Algorithm

Decision Value Range

Bitrate {500,850,1200,1850} kbps
Target Buffer {0,1}

Latency Threshould [0,∞]

streaming: the latency penalty, and the frame skipping penalty. The
new QoE model can be expressed as:

QoE =
N∑
n=1

M∑
m=1

(β̄Rn,m−γTn,m−δLn,m−θSn,m )−

N−1∑
n=1

ᾱ |Rn+1−Rn |

where N is the number of GoPs;M is the number of frames in each
GoP; Rn,m ,Tn,m , Ln,m and Sn,m represent the bitrate, rebuffering
time, latency and frame-skipping time of framem in GoP n, respec-
tively. The coefficients β̄,γ , δ , θ, and ᾱ can be set according to the
application scenario and user preference.

To tune the QoE model, we ran multiple experiments to test the
performance of simple ABR algorithms. These experiments lead
us to set the coefficients as follows for the grand challenge: (i) The
weight of bitrate, β̄ , is set to the playout time of this frame; (ii)
The weight of rebuffering time, γ , is set to be the max bitrate level
(1850 kbps in this challenge); (iii) To encourage the participants to
adaptively utilize our latency control mechanisms and accomplish
lower latency, we set different degrees of punishment towards
different latency. In this challenge, if the end-to-end delay is lower
than 1 sec, the weight of the latency penalty, δ is 0.005. Otherwise,
δ is 0.01; (iv) The weight of frame-skipping time, θ is set to the
lowest bitrate level. Thus, the penalty of frame-skipping is lower
than rebuffering; (v) To decrease the number of bitrate switch, we
set a small penalty, the weight of bitrate switch, ᾱ to 0.02.

In this challenge, we evaluated the participants’ algorithms in
simulation given the all possible 12 combinations between the three
video trace categories and four types of network traces by using the
above QoE model. For each network type, we record the average
QoE scores obtained by each algorithm under three video traces
and twenty network traces of the corresponding type. Therefore,
there are four ranking lists, each corresponds to a type of network
trace.

6 OVERVIEW OF SUBMISSIONS
A total of 59 teams fromChina, USA, Canada, and Japan participated
in our challenge. Most of the submitted algorithms are variants
of existing ABR algorithms. Their modifications for live stream-
ing indicate that current algorithms cannot be directly applied in
the live scenario. For example, the buffer-based algorithms (e.g.,
BBA [5]) lack sufficient scheduling space due to the small playback
buffer caused by the low-latency constraint. The quality-based al-
gorithms (e.g.,MPC [16] and Pensive [10]) need the future segment
information as decision inputs.

Nine of the top ten teams submitted algorithms that use rein-
forcement learning. After analyzing all the ABR algorithms and
their rankings, we found some common insights that are helpful
to enhance ABR algorithms for live streaming. First, reinforce-
ment learning for continuous control (e.g., DDPG [9]) performs
better than reinforcement learning for discrete action control (e.g.,
DQN [11], A3C [12]) because the value of latency threshold is con-
tinuous. Second, since in live streaming scenario one cannot look
ahead to know the properties of the future video segments, being
able to accurately predict future source video information (e.g., the
segment size) based on the video information available.

7 SUMMARY
Through the ACM Multimedia 2019 Live Video Streaming Grand
Challenge, we have provided a simulation platform that allows
researchers to benchmark ABR and latency control algorithms
against each other. We hope that this effort allows the commu-
nity to push the envelope of live video streaming algorithms. The
simulation platform, along with the video and network traces,
are available online, at https://github.com/NGnetLab/Live-Video-
Streaming-Challenge.
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